Detection of an anomalous path in a noisy network

Shirshendu Chatterjee,

City College & Graduate Center, CUNY

Joint Work with Ofer Zeitouni

CUNY Probability Seminar, Feb 2018

Background

- The topic fits into broad framework of nonparametric detection.
- Based on measurements about variables related through a graphical model, detect whether there is a sequence of connected nodes which exhibit a "peculiar behavior".
- Consider a graph-indexed process: a model problem for detecting whether or not there is a chain of connected nodes in a given network which exhibit an "unusual behavior".
 - Trace the existence of a polluter in a network of streams
 - Detecting atypical gene behavior in a given gene network
- Based on one realization of this process,
 - can one reliably detect if there is a chain of nodes (hidden in the background noise) that stand out?
 - How subtle a difference can one detect?

Our problem set up

Suppose G_n is a $n \times n$ two dimensional graph with node set V_n and path set P_n . Paths in P_n are nonintersecting and each has order n many nodes. Suppose each node \mathbf{v} has a r.v. $X_{\mathbf{v}}$ attached to it.

Observable: $(X_{\mathbf{v}}, \mathbf{v} \in V_n)$.

- Null hypothesis H_0 : The random variables $\{X_{\mathbf{v}}: \mathbf{v} \in V_n\}$ are *i.i.d.* with common distribution N(0,1).
- Alternate (signal) hypothesis $H_{1,n}$: it is a composite hypothesis $\bigcup_{\pi \in P(G_n)} H_{1,\pi}$, where, under $H_{1,\pi}$, the random variables $\{X_{\mathbf{v}} : \mathbf{v} \in V_n\}$ are independent with

$$X_{\mathbf{v}} \stackrel{d}{=} egin{cases} N(\mu_n, 1) & ext{if } \mathbf{v} \in \pi \\ N(0, 1) & ext{otherwise} \end{cases}$$
 for some $\mu_n > 0$.

Main Question

Let \mathbb{P}_0 and \mathbb{P}_{π} be the probability distribution of $(X_{\mathbf{v}}, \mathbf{v} \in V_n)$ under the hypothesis H_0 and $H_{1,\pi}$.

Question. For which values of μ_n , the probability distributions \mathbb{P}_0 and $\cup_{\pi \in P_n} \mathbb{P}_{\pi}$ are distinguishable?

More precisely, consider the following.

- A test T_n is a $\{0,1\}$ -valued function of $(X_{\mathbf{v}},\mathbf{v}\in V_n)$
- $\{T_n = 1\} \leftrightarrow$ "Accept signal hypothesis", and $\{T_n = 0\} \leftrightarrow$ "Accept null hypothesis"
- Minimax risk: For any test T_n ,

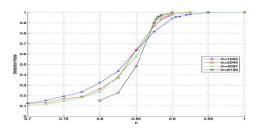
$$\gamma(T_n) := \mathbb{P}(Typel) + \sup_{\pi \in P_n} \mathbb{P}(Typell) = \mathbb{P}_0(T_n = 1) + \sup_{\pi \in P_n} \mathbb{P}_{\pi}(T_n = 0).$$

- A test T_n is
 - asymptotically powerful if $\gamma(T_n) \to 0$.
 - asymptotically powerless if $\gamma(T_n)$ is close to 1.

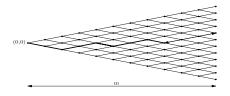
Question. What values of μ_n (signal per anomalous node) can be detected reliably?

GLRT

The GLRT would reject H_0 for large values of $M_n := \max_{\pi \in P_n} \sum_{\mathbf{v} \in \pi} X_{\mathbf{v}}$. Its performance is not optimal.



Known initial location & directed paths



Consider the two dimensional graph with vertex set

$$V_n := \{(i,j) : 0 \le i \le n-1, |j| \le i, \text{ and } i,j \text{ have same parity}\},\$$

and path set P_n consisting of directed paths starting at the origin.

Theorem (Castro, Candes, Helgason, Zeitouni (2008))

If $\mu_n \sqrt{\log(n)} \to \infty$, then there is an asymptotically powerful test. If $\mu_n \log(n) \sqrt{\log\log(n)} \to 0$, then all tests are asymptotically powerlless.

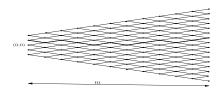
The statistic separating the two hypothesis

- Consider a linear statistic $\sum_{(i,j)\in V_n} w_{i,j} X_{(i,j)}$, where $(w_{i,j})_{(i,j)\in V_n}$ are weights.
- Choose the weights which maximizes the signal-noise ratio.
- Optimal weight $w_{i,j}$ turns out to be proportional to 1/(i+1).
- So the (weighted average) linear statistic separating the two hypothesis is

$$WAS := \sum_{(i,j) \in V_n} \frac{X_{(i,j)}}{i+1},$$

- $\mathbb{E}_0(WAS) = 0$, $\mathbb{E}_{\pi}(WAS) = \mu_n \log(n)$, $Var_0(WAS) = Var_{\pi}(WAS) = \log(n)$, so the signal-noise ratio is $\mu_n \sqrt{\log(n)}$.
- So if $\mu_n \sqrt{\log(n)} \to \infty$, then WAS separates the two hypothesis.

Unknown initial location and directed paths



Consider the two dimensional graph with vertex set

 $V_n := \{(i,j) : 0 \le i \le n-1, |j| \le an+i, \text{ and } i,j \text{ have same parity}\},$

and path set P_n consisting of directed paths starting at the left hyperplane.

Theorem (C. and Zeitouni (2017))

If $\mu_n \sqrt{\log(n)} \ge C$ for some large constant C, then there is an asymptotically powerful test.

If $\mu_n \log(n) \sqrt{\log \log(n)} \to 0$, then all tests are asymptotically powerlless.

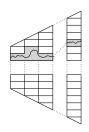
The statistic separating the two hypothesis

- The WAS loses its power in this case.
- We develop a polynomial statistic (*PS*), which is a polynomial in $(X_{(i,j)},(i,j) \in V_n)$.
- The *PS* is obtained inductively using a quadratic statistic as the building black.
- Call $(i,j) \iff (i',j')$ if a path hitting (i,j) can visit (i',j') and vice versa.
- Define the quadratic forms

$$Q_n := \sum_{(i,j),(i',j') \in V_n,(i,j) \leftrightarrow (i',j')} \frac{1}{|i-i'|} X_{(i,j)} X_{(i',j')}.$$

- $\mathbb{E}_0(Q_n) = 0$, $\mathbb{E}_{\pi}(Q_n) = \mu_n^2 n \log(n)$, $Var_0(Q_n) = n^2 \log(n)$ and $Var_{\pi}(Q_n) = (1 + o(1))n^2 \log(n)$, so the signal-noise ratio is $\mu_n^2 \sqrt{\log(n)}$.
- So if $\mu_n \gg (\log(n))^{-1/4} \to \infty$, then Q_n separates the two hypothesis.

Renormalization Argument



We partition the graph into disjoint squares and half-squares having side length \sqrt{n} , and consider

- the coarse grained graph, where each square (and half-square) represents a node,
- the coarse grained path on the above graph.

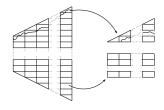
The random variable attached to a coarse grained node is the normalized quadratic form $Q_{\sqrt{n}}$ computed on the associated square (or half-square).

Renormalization Argument (continued)

Thus, we get a renormalized version of the original problem, where n is replaced by \sqrt{n} and μ_n is replaced by $\mu_n^2\sqrt{\log(\sqrt{n})}=c\mu_n^2\sqrt{\log(n)}$ (the signal noise ratio for $Q_{\sqrt{n}}$).

If we compute a similar quadratic form of the quadratic forms corresponding to the squares (and thus use a polynomial of degree 4), then the new signal-noise ration becomes

$$symp \left(\mu_n^2 \sqrt{\log(n)}\right)^2 \sqrt{\log(n)} = \mu_n^4 \log^{3/2}(n) \to \infty \text{ if } \mu_n \gg (\log(n))^{-3/8}.$$



Repeating the renormalization argument 'few' times, we get the upper bound for detection threshold to be $C/\sqrt{\log(n)}$.

Lower bound for detection threshold

- Suppose that the anomalous path π follow a prior distribution Π on the set of paths.
- Let L_n be the likelihood ratio: $L_n(\mathbf{X}) := \frac{d\mathbb{P}_{\Pi}}{d\mathbb{P}_0}(\mathbf{X})$. Consider the test $\mathbf{1}_{\{L_n > 1\}}$.
- It is well known that

$$\inf_{\text{all tests } T_n} \gamma(T_n) = \gamma(\mathbf{1}_{\{L_n \geq 1\}}) = \mathbb{P}_0(L_n \geq 1) + \mathbb{P}_\Pi(L_n < 1) =: \gamma_n^*.$$

• Clearly $\mathbb{E}_0(L_n) = 1$. A standard calculation shows

$$\gamma_n^* = 1 - \frac{1}{2} \mathbb{E}_0 |L_n - 1|.$$

- Need to find condition on μ_n such that $\mathbb{E}_0|L_n-1|\to 0$.
- Instead, we use Caichy-Schwartz inequality to have

$$\gamma_n^* \ge 1 - \frac{1}{2} \sqrt{\mathbb{E}_0[(L_n - 1)^2]}$$

and find conditions on μ_n so that $\mathbb{E}_0[(L_n-1)^2] \to 0$.

Connection with number of intersection of two walks

- Recall that $L_n = \frac{d\mathbb{P}_{\Pi}}{d\mathbb{P}_0}(\mathbf{X}) = \mathbb{E}_{\Pi} \exp(\sum_{\mathbf{v} \in \Pi} \mu_n X_{\mathbf{v}} \frac{1}{2}\mu_n^2).$
- ullet $\mathbb{E}_0[(L_n-1)^2] = \mathbb{E}_0(L_m^2) 1$ and

$$\begin{split} &\mathbb{E}_{0}(L_{n}^{2}) = \mathbb{E}_{0}\mathbb{E}_{\Pi_{1}\times\Pi_{2}} \exp\left(\sum_{\mathbf{v}\in\Pi_{1}}\mu_{n}X_{\mathbf{v}} - \frac{1}{2}\mu_{n}^{2} + \sum_{\mathbf{v}\in\Pi_{2}}\mu_{n}X_{\mathbf{v}} - \frac{1}{2}\mu_{n}^{2}\right) \\ &= \mathbb{E}_{\Pi_{1}\times\Pi_{2}} \left[\prod_{\mathbf{v}\in\Pi_{1}\cap\Pi_{2}}\mathbb{E}_{0}e^{2\mu_{n}X_{\mathbf{v}} - \mu_{n}^{2}} \prod_{\mathbf{v}\in\Pi_{1}\triangle\Pi_{2}}\mathbb{E}_{0}e^{\mu_{n}X_{\mathbf{v}} - \frac{1}{2}\mu_{n}^{2}}\right] \\ &= \mathbb{E}_{\Pi_{1}\times\Pi_{2}}e^{\mu_{n}^{2}N_{n}}, \end{split}$$

where N_n is the number of intersections between two independent walks having prior Π .

Predictability Profile

- The strategy is to construct a prior on the family of paths with a low predictability profile, that is, a process whose location in the future is hard to predict from its current state and history.
- Predictability profile (Benjamini, Pemantle and Peres, 1998) of a stochastic process $(S_t)_{t\geq 0}$ is

$$PRE_{S}(k) := \sup_{x, history} \mathbb{P}(S_{t+k} = x \mid S_0, S_1, \dots, S_t), \ k \in \mathbb{N}.$$

Theorem (Haggstrom & Mossel (1998) improving Benjamini et al)

If $(f_k)_{k\geq 1}$ is a decreasing and positive sequence such that $\sum_{k\geq 1} \frac{f_k}{k} < \infty$, then there exists a nearest-neighbor walk $(S_t)_{t\geq 0}$ starting at $S_0=0$ satisfying $PRE_S(k)\leq \frac{C}{kf_k}$.

Hoffman (1998) proved if $(f_k)_{k\geq 1}$ is a decreasing positive sequence with $\sum_{k\geq 1}\frac{f_k}{k}=\infty$, then the above predictability profile is impossible to achieve.

Predictability Profile and Number of Intersections

 The number of intersections between two independent nearest-neighbor walks drawn from a prior with low predictability profile is "small", namely it has exponential tails.

Lemma

For a walk $(S_t)_{0 \le t \le n-1}$ with finite number of steps, if

$$\sum_{1 \le k < n/B} PRE_S(kB) \le \theta < 1 \text{ for some } B,$$

then for any (possibly deterministic) sequence $(v_t)_{0 \le t \le n-1}$,

$$\mathbb{P}(|\mathbf{S} \cap \mathbf{v}| > k) \le B \cdot \theta^{k/B}.$$

Using this estimate and some work,

$$\mathbb{E}_{\Pi_1 \times \Pi_2} e^{\mu_n^2 N_n} \lessapprox e^{\mu_n^2 \log^2(n) \log \log(n)} \to 1 \text{ if } \mu_n \ll [\log(n) \sqrt{\log \log(n)}]^{-1}.$$

This will imply $\liminf \gamma_n^* \geq 1$. So reliable detection is impossible.

Comments

- Our algorithm also applies to the 'known initial location' case.
- Our algorithm also applies to the case where the paths are not necessarily directed.
- The detection threshold vanishes as *n* grows.
- Other distribution. Similar results are available for other distributions from exponential family.
- Other graph. The detection threshold is sensitive to the underlying graph. The threshold is nonvanishing when the graph has a tree structure or has high dimension.

Future directions

The anomalous subset may be evolving with time.

- It may be associated to the unfolding of a stochastic process.
- It may be associated to or controlled by an underlying "particle system" running on the network.

Thank you