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Background

The topic fits into broad framework of nonparametric
detection.

Based on measurements about variables related through a
graphical model, detect whether there is a sequence of
connected nodes which exhibit a “peculiar behavior”.

Consider a graph-indexed process: a model problem for
detecting whether or not there is a chain of connected nodes
in a given network which exhibit an “unusual behavior”.

Trace the existence of a polluter in a network of streams
Detecting atypical gene behavior in a given gene network

Based on one realization of this process,

can one reliably detect if there is a chain of nodes (hidden in
the background noise) that stand out?
How subtle a difference can one detect?
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Our problem set up

Suppose Gn is a n× n two dimensional graph with node set Vn and
path set Pn. Paths in Pn are nonintersecting and each has order n
many nodes. Suppose each node v has a r.v. Xv attached to it.
Observable: (Xv, v ∈ Vn).

Null hypothesis H0: The random variables {Xv : v ∈ Vn} are
i.i.d. with common distribution N(0, 1).
Alternate (signal) hypothesis H1,n: it is a composite
hypothesis ∪π∈P(Gn)H1,π, where, under H1,π, the random
variables {Xv : v ∈ Vn} are independent with

Xv
d
=

{
N(µn, 1) if v ∈ π
N(0, 1) otherwise

for some µn > 0.
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Main Question

Let P0 and Pπ be the probability distribution of (Xv, v ∈ Vn)
under the hypothesis H0 and H1,π.

Question. For which values of µn, the probability distributions P0

and ∪π∈PnPπ are distinguishable?

More precisely, consider the following.

A test Tn is a {0, 1}-valued function of (Xv, v ∈ Vn)

{Tn = 1} ↔ “Accept signal hypothesis”, and
{Tn = 0} ↔ “Accept null hypothesis”

Minimax risk: For any test Tn,
γ(Tn) := P(TypeI ) + supπ∈Pn

P(TypeII ) = P0(Tn =
1) + supπ∈Pn

Pπ(Tn = 0).

A test Tn is
asymptotically powerful if γ(Tn)→ 0.
asymptotically powerless if γ(Tn) is close to 1.

Question. What values of µn (signal per anomalous node) can be
detected reliably?
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GLRT

The GLRT would reject H0 for large values of
Mn := maxπ∈Pn

∑
v∈π Xv. Its performance is not optimal.
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Known initial location & directed paths

m

(0,0)

Consider the two dimensional graph with vertex set

Vn := {(i , j) : 0 ≤ i ≤ n − 1, |j | ≤ i , and i , j have same parity},

and path set Pn consisting of directed paths starting at the origin.

Theorem (Castro, Candes, Helgason, Zeitouni (2008))

If µn
√

log(n)→∞, then there is an asymptotically powerful test.
If µn log(n)

√
log log(n)→ 0, then all tests are asymptotically

powerlless.
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The statistic separating the two hypothesis

Consider a linear statistic
∑

(i ,j)∈Vn
wi ,jX(i ,j), where

(wi ,j)(i ,j)∈Vn
are weights.

Choose the weights which maximizes the signal-noise ratio.

Optimal weight wi ,j turns out to be proportional to 1/(i + 1).

So the (weighted average) linear statistic separating the two
hypothesis is

WAS :=
∑

(i ,j)∈Vn

X(i ,j)

i + 1
,

E0(WAS) = 0, Eπ(WAS) = µn log(n),
Var0(WAS) = Varπ(WAS) = log(n), so the signal-noise ratio
is µn

√
log(n).

So if µn
√

log(n)→∞, then WAS separates the two
hypothesis.
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Unknown initial location and directed paths

m

(0,0)

Consider the two dimensional graph with vertex set

Vn := {(i , j) : 0 ≤ i ≤ n−1, |j | ≤ an+i , and i , j have same parity},

and path set Pn consisting of directed paths starting at the left
hyperplane.

Theorem (C. and Zeitouni (2017))

If µn
√

log(n) ≥ C for some large constant C, then there is an
asymptotically powerful test.
If µn log(n)

√
log log(n)→ 0, then all tests are asymptotically

powerlless.
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The statistic separating the two hypothesis

The WAS loses its power in this case.

We develop a polynomial statistic (PS), which is a polynomial
in (X(i ,j), (i , j) ∈ Vn).

The PS is obtained inductively using a quadratic statistic as
the building black.

Call (i , j) ! (i ′, j ′) if a path hitting (i , j) can visit (i ′, j ′) and
vice versa.

Define the quadratic forms

Qn :=
∑

(i ,j),(i ′,j ′)∈Vn,(i ,j)!(i ′,j ′)

1

|i − i ′|
X(i ,j)X(i ′,j ′).

E0(Qn) = 0, Eπ(Qn) = µ2
nn log(n), Var0(Qn) = n2 log(n) and

Varπ(Qn) = (1 + o(1))n2 log(n), so the signal-noise ratio is
µ2
n

√
log(n).

So if µn � (log(n))−1/4 →∞, then Qn separates the two
hypothesis.
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Renormalization Argument

We partition the graph into disjoint squares and half-squares
having side length

√
n, and consider

the coarse grained graph, where each square (and half-square)
represents a node,

the coarse grained path on the above graph.

The random variable attached to a coarse grained node is the
normalized quadratic form Q√n computed on the associated square
(or half-square).
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Renormalization Argument (continued)

Thus, we get a renormalized version of the original problem, where
n is replaced by

√
n and µn is replaced by

µ2
n

√
log(
√
n) = cµ2

n

√
log(n) (the signal noise ratio for Q√n).

If we compute a similar quadratic form of the quadratic forms
corresponding to the squares (and thus use a polynomial of degree
4), then the new signal-noise ration becomes

�
(
µ2
n

√
log(n)

)2√
log(n) = µ4

n log3/2(n)→∞ if µn � (log(n))−3/8.

Repeating the renormalization argument ‘few’ times, we get the
upper bound for detection threshold to be C/

√
log(n).
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Lower bound for detection threshold

Suppose that the anomalous path π follow a prior distribution
Π on the set of paths.

Let Ln be the likelihood ratio: Ln(X) := dPΠ
dP0

(X). Consider
the test 1{Ln≥1}.

It is well known that

inf
all tests Tn

γ(Tn) = γ(1{Ln≥1}) = P0(Ln ≥ 1)+PΠ(Ln < 1) =: γ∗n .

Clearly E0(Ln) = 1. A standard calculation shows

γ∗n = 1− 1

2
E0|Ln − 1|.

Need to find condition on µn such that E0|Ln − 1| → 0.

Instead, we use Caichy-Schwartz inequality to have

γ∗n ≥ 1− 1

2

√
E0[(Ln − 1)2]

and find conditions on µn so that E0[(Ln − 1)2]→ 0.
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Connection with number of intersection of two walks

Recall that Ln = dPΠ
dP0

(X) = EΠ exp(
∑

v∈Π µnXv − 1
2µ

2
n).

E0[(Ln − 1)2] = E0(L2
m)− 1 and

E0(L2
n) = E0EΠ1×Π2 exp

∑
v∈Π1

µnXv −
1

2
µ2
n +

∑
v∈Π2

µnXv −
1

2
µ2
n


= EΠ1×Π2

 ∏
v∈Π1∩Π2

E0e
2µnXv−µ2

n

∏
v∈Π14Π2

E0e
µnXv− 1

2
µ2
n


= EΠ1×Π2e

µ2
nNn ,

where Nn is the number of intersections between two
independent walks having prior Π.
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Predictability Profile

The strategy is to construct a prior on the family of paths with
a low predictability profile, that is, a process whose location in
the future is hard to predict from its current state and history.

Predictability profile (Benjamini, Pemantle and Peres, 1998)
of a stochastic process (St)t≥0 is

PRES(k) := sup
x ,history

P(St+k = x | S0, S1, . . . ,St), k ∈ N.

Theorem (Haggstrom & Mossel (1998) improving Benjamini et al)

If (fk)k≥1 is a decreasing and positive sequence such that∑
k≥1

fk
k <∞, then there exists a nearest-neighbor walk (St)t≥0

starting at S0 = 0 satisfying PRES(k) ≤ C
kfk

.

Hoffman (1998) proved if (fk)k≥1 is a decreasing positive sequence
with

∑
k≥1

fk
k =∞, then the above predictability profile is

impossible to achieve.
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Predictability Profile and Number of Intersections

The number of intersections between two independent
nearest-neighbor walks drawn from a prior with low
predictability profile is “small”, namely it has exponential tails.

Lemma

For a walk (St)0≤t≤n−1 with finite number of steps, if∑
1≤k<n/B

PRES(kB) ≤ θ < 1 for some B,

then for any (possibly deterministic) sequence (vt)0≤t≤n−1,

P(|S ∩ v| > k) ≤ B · θk/B .

Using this estimate and some work,

EΠ1×Π2e
µ2
nNn / eµ

2
n log2(n) log log(n) → 1 if µn � [log(n)

√
log log(n)]−1.

This will imply lim inf γ∗n ≥ 1. So reliable detection is impossible.
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Comments

Our algorithm also applies to the ‘known initial location’ case.

Our algorithm also applies to the case where the paths are not
necessarily directed.

The detection threshold vanishes as n grows.

Other distribution. Similar results are available for other
distributions from exponential family.

Other graph. The detection threshold is sensitive to the
underlying graph. The threshold is nonvanishing when the
graph has a tree structure or has high dimension.

S. Chatterjee Detection of Anomalous Path



Future directions

The anomalous subset may be evolving with time.

It may be associated to the unfolding of a stochastic process.

It may be associated to or controlled by an underlying
“particle system” running on the network.
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Thank you
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